Opaque analysis for resource sharing in compositional real-time systems

Martijn M. H. P. van den Heuvel†, Moris Behnam‡, Reinder J. Bril†, Johan J. Lukkien† and Thomas Nolte‡
†Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
‡Mälardalen Real-Time Research Centre (MRTC), P.O. Box 883, SE-721 23 Västerås, Sweden

Abstract—In this paper we propose opaque analysis methods to integrate dependent real-time components into hierarchical fixed-priority scheduled systems. To arbitrate mutually exclusive resource access between components, we consider two existing protocols: HSRP - comprising overrun with and without payback - and SIRAP. An opaque analysis allows to postpone the choice of a synchronization protocol until component integration time.

First, we identify the sources of pessimism in the existing analysis techniques and we conclude that both protocols assume different models in their local analysis. In particular, the compositional analysis for overrun with payback (OWP) is not opaque and is pessimistic. The latter makes OWP expensive compared to its counter part without a payback mechanism (ONP). This paper presents an opaque and less pessimistic OWP analysis.

Secondly, SIRAP requires more timing information to perform a task-level schedulability analysis. In many practical situations, however, detailed timing characteristics of tasks are hard to obtain. We introduce an opaque analysis for SIRAP using the analysis of ONP to reduce the required timing information during the local analysis. We show that the analysis for ONP cannot deem systems schedulable which are infeasible with SIRAP. The SIRAP analysis may therefore reduce the required system resources of a component by sacrificing the choice for an arbitrary synchronization protocol at system integration time.

I. INTRODUCTION

The increasing complexity of real-time systems demands a decoupling of (i) development and analysis of individual components and (ii) integration of components on a shared platform, including analysis at the system level. Hierarchical scheduling frameworks (HSFs) have been extensively investigated as a paradigm for facilitating this decoupling [1]. A component that is validated to meet its timing constraints when executing in isolation will continue meeting its timing constraints after integration (or admission) on a shared uni-processor platform. The HSF therefore provides a promising solution for current industrial standards, e.g. the AUTomotive Open System ARchitecture (AUTOSAR) which specifies that an underlying operating system should prevent timing faults in any component to propagate to other components on the same processor. The HSF provides temporal isolation between components by allocating a budget to each component.

An HSF without further resource sharing is unrealistic, however, since components may for example use operating system services, memory mapped devices and shared communication devices requiring mutually exclusive access. An HSF with such support makes it possible to share logical resources between arbitrary tasks, which are located in arbitrary components, in a mutually exclusive manner. A resource that is used in more than one component is denoted as a global shared resource. A resource that is only shared by tasks within a single component is a local shared resource. If a task that accesses a global shared resource is suspended during its execution due to the exhaustion of its budget, excessive blocking periods can occur which may hamper the correct timeliness of other components [2].

To accommodate resource sharing between components, two synchronization protocols [3], [4] have been proposed based on the Stack Resource Policy (SRP) [5] for two-level fixed-priority-scheduled HSFs. Each of these protocols describes a run-time mechanism to handle the depletion of a component’s budget during global resource access. In short, two general mechanisms are proposed: (i) self-blocking when the remaining budget is insufficient to complete a critical section - called SIRAP [4] or (ii) overrun the budget until the critical section ends - called HSRP [3]. HSRP comes in two flavors: overrun with payback (OWP) and overrun without payback (ONP). The term without payback means that the additional amount of budget consumed during an overrun does not have to be paid back during the next budget period.

In practical situations, many critical-section lengths are unknown, e.g. tasks may execute many critical sections which are hard to analyze individually (as with SIRAP). It can be easier to determine the worst-case critical-section length per shared resource, as used in the traditional response-time analysis. Upon component integration, we apply a global schedulability test based on a choice for a global synchronization protocol. We therefore call the local analysis of a component opaque, if

1) it does not include any timing information about global resource arbitration;
2) it allows to post-pone the classification of shared resources into global and local until integration time.

These criteria are important in open multi-vendor environments, since it hides which local analysis method is applied. Hence, an opaque analysis enables an incremental analysis, since it separates concerns of local and global scheduling.

Using the notion of opaque analysis methods, we can apply the existing analysis for ONP to integrate such a component into the HSF. The reason for this is that the local analysis of ONP is compliant to the widely accepted synchronization protocols PCP [6] and SRP [5]. Surprisingly and contrary to ONP, the current OWP analysis does not support opaque

†The work in this paper is supported by the Dutch HTAS-VERIFIED project, see http://www.htas.nl/index.php?pid=154.
analysis, because it modifies the abstracted processor supply to a component. For the same reason SIRAP has no opaque analysis.

Contributions: The contributions of this paper are fivefold. First, we show that ONP can be used as a valid upper bound for SIRAP to support components with an opaque analysis. This means that ONP provides a valid analysis technique for resources arbitrated by a run-time implementation of SIRAP. Secondly, we reduce the pessimism of OWP and show that OWP is in most cases better than ONP. Thirdly, we show that our improved analysis for OWP supports the integration of components with an opaque analysis into the HSF. Fourthly, we compare the abstraction overheads of the different analysis techniques for SIRAP, OWP and ONP. Finally, we derive revised guidelines for selecting a synchronization protocol.

II. RELATED WORK

Deng and Liu [7] proposed a two-level HSF for open systems, where components may be independently developed and validated. The corresponding schedulability analysis have been presented in [8] for fixed-priority preemptive scheduling (FPPS) and in [9] for earliest-deadline-first (EDF) global schedulers. For global resource sharing in HSFs, three protocols have recently been presented to prevent budget depletion during resource access, i.e. HSRP [3], SIRAP [4] and BROE [10]. Unlike HSRP and SIRAP’s analysis, however, the global schedulability analysis of BROE is limited to EDF and cannot be generalized to include other scheduling policies.

The overrun mechanism (with payback) was first introduced in the context of aperiodic servers in [2]. This mechanism was later re-used in HSRP in the context of two-level HSFs by Davis and Burns [3] and complemented with a variant without payback. Although the analysis presented in [3] does not integrate in HSFs due to the lacking support for independent analysis of components, this limitation is lifted in [11].

The idea of self-blocking has also been considered in different contexts, e.g. for supporting soft real-time tasks [12] and for a zone-based protocol in a pair-scheduling environment [13]. SIRAP [4] uses self-blocking for hard real-time tasks in HSFs on a single processor and its associated analysis supports composability. In [14] the original SIRAP analysis [4] has been significantly improved when arbitrating multiple shared resources. We will show that the strength of SIRAP’s analysis comes from its detailed system model, making it difficult to analyze components with opaque timing characteristics.

The original SIRAP [4] and HSRP [11] analyses have been analytically compared with respect to their impact on the system load for various component parameters [15]. The performance of each protocol heavily depends on the chosen system parameters. Moreover, these results suggest that HSRP’s overrun mechanism with payback (OWP) is hardly beneficial compared to overrun without payback (ONP). This observation is contradictory with the recommendations from Davis and Burns [3]. Our new analysis methods make the results in [15] obsolete and we will provide new guidelines to select a synchronization protocol in two-level FPPS-based HSFs.

III. REAL-TIME SCHEDULING MODEL

We consider a two-level FPPS-based HSF, following the periodic resource model [1] to guarantee processor allocations to components. However, we believe that our results can be straightforwardly extended to other scheduling policies. We use SRP-based synchronization to arbitrate mutually exclusive access to global shared resources.

A. Component model

A system contains a single processor, a set C of N components C1, ..., CN for which we assume a periodic resource model [1], and a set R of M global logical resources R1, ..., RM. Each component Cs has a dedicated budget which specifies its periodically guaranteed fraction of the processor.

The timing characteristics of a component Cs are specified by means of a triple $\Gamma_s(P_s, Q_s, X_s)$, where $P_s \in \mathbb{R}^+$ denotes its period, $Q_s \in \mathbb{R}^+$ its budget, and X_s the set of maximum access times to global resources. The maximum value in X_s is denoted by X_s, where $0 < X_s \leq P_s$. The set \mathcal{R}_s denotes the subset of global resources accessed by component C_s. The maximum time that a component C_s executes while accessing resource $R_t \in \mathcal{R}_s$ is denoted by X_s, where $X_s \in \mathbb{R}^+ \cup \{0\}$ and $X_s > 0 \iff R_t \in \mathcal{R}_s$.

Processor supply: The processor supply refers to the amount of processor allocation that a component C_s can provide to its workload. The supply bound function $\text{sbf}_{\Gamma_s}(t)$ of the periodic resource model $\Gamma_s(P_s, Q_s)$, that computes the minimum supply for any interval of length t, is given by [1]:

$$\text{sbf}_{\Gamma_s}(t) = \max \left\{ 0, \frac{(k(t) - 1)Q_s}{P_s}, k(t) - (k(t) + 1)Q_s \right\},$$

where $k(t) = \left\lceil \frac{t}{P_s} - \frac{Q_s}{P_s} \right\rceil$. The longest interval a component may receive no processor supply is named the *blackout duration*, BD_s, i.e. $BD_s = 2(P_s - Q_s)$.

B. Task model

Each component C_s contains a set T_s of n_s sporadic tasks $\tau_1, \ldots, \tau_{n_s}$. The timing characteristics of a task $\tau_{si} \in T_s$ are specified by means of a triple (T_{si}, C_{si}, D_{si}), where $T_{si} \in \mathbb{R}^+$ denotes its minimum inter-arrival time, $C_{si} \in \mathbb{R}^+$ its worst-case computation time, $D_{si} \in \mathbb{R}^+$ its (relative) deadline, where $0 < C_{si} \leq D_{si} \leq T_{si}$. We assume that period P_s of component C_s is selected such that $2P_s \leq T_{si} (\forall \tau_{si} \in T_s)$, because this efficiently assigns a budget to component C_s [1]. For notational convenience, tasks (and components) are given in priority order, i.e. τ_{s1} has the highest priority and τ_{sn_s} has the lowest priority.

The worst-case computation time of task τ_{si} within a critical section accessing global resource R_t is denoted h_{si}, where $h_{si} \in \mathbb{R}^+ \cup \{0\}$. C_{si} and h_{si} depend on $R_t \in \mathcal{R}_s$.

C. Synchronization protocol

This paper focuses on arbitrating global shared resources using SRP. Traditional protocols such as PCP [6] and SRP [5] can be used for local resource sharing in HSFs [16]. To be able to use SRP in an HSF for synchronizing global resources, its associated ceiling terms need to be extended.
1) Resource ceilings: With every global resource R_l two types of resource ceilings are associated; a global resource ceiling RC_l for global scheduling and a local resource ceiling rc_{si} for local scheduling. These ceilings are statically calculated and are defined as the highest priority of any component or task sharing resource R_l. According to SRP, these ceilings are:

$$RC_l = \min(N, \min\{s \mid R_l \in R_s\}),$$

$$rc_{si} = \min(n_s, \min\{i \mid h_{si} > 0\}).$$

The outermost min in (2) and (3) define RC_l and rc_{si} in those situations where no component or task uses R_l.

The local resource ceiling rc_{si} can be used to trade-off preemption against resource holding times [17], i.e. X_{sil} of a task tau_i to a resource R_l. From [11], [15] we know:

Lemma 1: Given $2P_s \leq T_{sil}(\forall \tau_i \in T_a)$, all tasks τ_i that are allowed to preempt a critical section accessing resource R_l, i.e. $j < rc_{si}$, can preempt at most once during an access to a global shared resource R_l by task τ_i.

This makes it possible to compute the resource holding time, X_{sil} of task τ_i to resource R_l as follows [15]:

$$X_{sil} = h_{sil} + \sum_{1 \leq j < rc_{si}} C_{sj},$$

and the maximum resource holding time within a component C_s is computed as $X_{sl} = \max\{X_{sil} \mid 1 \leq i \leq n_s\}$.

2) System and component ceilings: These ceilings are dynamic parameters that change during execution. The system ceiling is equal to the highest global resource ceiling of a currently locked resource in the system. Similarly, the component ceiling is equal to the highest local resource ceiling of a currently locked resource within a component. Under SRP a task can only preempt the currently executing task if its priority is higher than its component ceiling. A similar condition for preemption holds for components.

IV. COMPOSITIONAL ANALYSIS FOR FIXED-PRIORITY SCHEDULING

This section first recapitulates the existing analysis for ONP, OWP, and SIRAP. Next, we will show that SIRAP strictly dominates ONP. In Section VI we will make use of this property to define an opaque analysis for all three protocols.

A. Global schedulability analysis

For global FPPS of components the following sufficient schedulability condition holds:

$$\forall 1 \leq i \leq n_s : \exists t \in (0, P_s) : \text{RBF}(t, s) \leq t,$$

where $\text{RBF}(t, s)$ denotes the worst-case cumulative processor request of C_s for a time interval of length t. The function $\text{RBF}(t, s)$ depends on the chosen global synchronization protocol. We therefore assume that during component-integration time the synchronization protocol is known. For SIRAP and ONP, the $\text{RBF}(t, s)$ is defined as follows:

$$\text{RBF}(t, s) = B_s + \sum_{1 \leq r \leq s} \left[\left\lfloor \frac{t}{T_r} \right\rfloor \right] (Q_r + O_r).$$

A component C_r using ONP demands more resources in its worst-case scenario [11], i.e. the overrun budget O_r is:

$$O_r = \begin{cases} X_r & \text{for ONP and OWP} \\ 0 & \text{for SIRAP}. \end{cases}$$

For OWP, the $\text{RBF}(t, s)$ is slightly modified (using the same definition for O_r):

$$\text{RBF}(t, s) = B_s + \sum_{1 \leq r \leq s} \left[\left\lfloor \frac{t}{T_r} \right\rfloor \right] Q_r + O_r.$$

The blocking term, B_s, is defined according to [5]:

$$B_s = \max(0, \max\{X_{sl} \mid s < u \land R_l \in R_u \land RC_l \leq s\}).$$

We use the outermost max in (9) to define B_s in those situations where no shared resources are used.

B. Local schedulability analysis

By filling in task characteristics in the demand bound RBF of (5) and replacing the right-hand side by (1), i.e. replace t for $\text{RBF}_r(t)$, the same schedulability analysis holds for tasks executing within a component as for components at the global level. For local FPPS of tasks the following sufficient schedulability condition holds:

$$\forall 1 \leq i \leq n_s : \exists t \in (0, D_{si}) : \text{rbf}_s(t, i) \leq \text{rbf}_r(t),$$

where $\text{rbf}_s(t, i)$ denotes the worst-case cumulative processor request of τ_i for a time interval of length t. For ONP and OWP, the $\text{rbf}_s(t, i)$ is fully compliant to the schedulability analysis for task sets on a dedicated unit-speed processor, i.e.

$$\text{rbf}_s(t, i) = b_{si} + \sum_{1 \leq j \leq i} \left[\left\lfloor \frac{t}{T_{sj}} \right\rfloor \right] C_{sj}.$$

The blocking term, b_{si}, is defined according to [5]:

$$b_{si} = \max(0, \max\{h_{sj} \mid i < j \land h_{sj} > 0 \land rc_{si} \leq i\}).$$

The outermost max in (12) defines b_{si} also in those situations where no shared resources are used within a component.

According to the current analysis for OWP, however, it is required to modify the $\text{rbd}_i(t)$ compared to the definition given in (1), see [11]. In Section V, we eliminate this pessimism.

A component using SIRAP demands more resources in its worst-case scenario [14]. We therefore need to add a term, $I_{si}(t)$, to account for self-blocking to the $\text{rbd}_s(t, i)$. The self-blocking term $I_{si}(t)$ of a task τ_i is defined in terms of $z(t) = \left[\frac{t}{T_r} \right]$, representing an upper bound to the number of self-blocking occurrences within a time interval of length t, and a multi-set $G_{sri}^r(t)$ which comprises all self-blocking lengths X_{sil} that a task τ_i may experience by itself and other tasks τ_j in the same component in a non-decreasing order. We recall that $G_{sri}^r(t)$ stores all values X_{sil} in a non-decreasing order and includes a value for each individual resource access by a job of task τ_i to resource R_l. As a supplemental to our evaluation and proofs, we will show how to construct such a multi-set in the Appendix.
C. Sources of pessimism in the existing analysis

For the SIRAP analysis one needs to know how many critical sections each job accesses. Although this information is not required using HSRP, it makes SIRAP superior to ONP.

HSRP accounts for a worst-case overrun in each component period, while an actual overrun does not necessarily happen each period. However, exposing a multi-set of resource-holding times to the global schedulability test (similar to SIRAP) is impossible for HSRP, because this breaks the independent analysis of components due to the dependency of $G^\text{sort}_s(t)$ on the time values t in the testing set of the tasks in T_s.

Initially, SIRAP accounts for one self-blocking too much, because of the ceiling operator in the definition of $z(t)$ as part of the self-blocking term. Since each element in the set $G^\text{sort}_s(t)$ is at most of length X_s, the only reason for HSRP to become less pessimistic is when a self-blocking of approximately X_s is deducted in each component period. In this case the ONP analysis is more efficient.

We can conclude that SIRAP is always superior to ONP. In those cases where ONP yields better results, then the ONP analysis can be safely used to implement a SIRAP system.

Theorem 1: If a task set T_s is deemed schedulable on a periodic resource $\Gamma_s(P_s, Q_s, X_s)$ using the ONP analysis, then it is also feasible on a periodic resource $\Gamma'(P_s, Q_s + X_s, X_s)$ using a SIRAP implementation.

Proof: The sufficient schedulability condition for a task set T_s on a periodic resource $\Gamma_s(P_s, Q_s, X_s)$ is given by [14]:

$$\forall t_i \in T_s : \exists t \leq D_{s_i} : rbf_s(t_i, i) + I_{s_i}(t) \leq \text{sbf}_{\Gamma_s}(t), \quad (13)$$

where $rbf_s(t_i, i)$ is defined in (11), $sbf_{\Gamma_s}(t)$ is defined in (1) and the exact construction of $I_{s_i}(t)$ is given in the Appendix. By definition it holds that $\forall e \in G^\text{sort}_s(t) : e \leq X_s$. Hence, the schedulability condition in (13) is implied by:

$$\forall t_i \in T_s : \exists t : rbf_s(t_i, i) + \left\lceil \frac{P_i}{X_s} \right\rceil \leq sbf_{\Gamma_s}(t). \quad (14)$$

Since within one budget period a self-blocking occurrence can only happen at the end of a supply due to insufficient budget to complete a critical section, we can remove the dependency on t provided that we add X_s extra budget in each component period. In other words, a conservative budget Q' is:

$$X_s + (\min Q_s : \forall t_i \in T_s : \exists t : rbf_s(t_i, i) \leq sbf_{\Gamma_s}(t)). \quad (15)$$

The right-hand term of (15) is the same as schedulability condition for ONP, see (10), which concludes our proof. □

Given Theorem 1, we make it possible to integrate a component validated by a standard analysis for SRP+FPPS into the HSF, while using SIRAP for global resource arbitration. Next, we derive an opaque analysis for OWP.

According to [15], [11], overrun with payback (OWP) has additional pessimism at the local schedulability compared to overrun without payback (ONP). Firstly, due to payback a component may supply less resource within a component period. Secondly, the payback increases the blackout duration of a component. Should overrun with payback therefore be considered obsolete based on these observations, or not?

V. SRP with Budget Overruns: To Payback or Not?

We reconsider the problem of resource sharing across budgets. Ghazalie and Baker [2] recognized that when tasks access resources across their budget with the SRP, their budget may deplete during resource access so that other components may experience an excessive blocking duration. As a solution, they proposed to overrun the budget Q_s until the critical section completes and they subsequently deduct the amount of overrun from the next budget replenishment of the corresponding component. Their (global) analysis corresponds to the analysis in [3], [11] in the sense that we need to account for additional interference to all other components due to a worst-case overprovisioning of X_s budget which facilitates the overrun. This results in the sufficient schedulability condition under global FPPS of components, where the $RBF(t, s)$ is defined in (8).

![Figure 1. Worst-case characterization of the periodic processor supply for SRP with mechanisms for overrun and payback, as presented in [11].](image)

We now need to characterize the worst-case resource supply to the tasks serviced by component C_s. Behnam et al. [11] distinguish two cases to represent the worst-case processor supply, see Figure 1. The worst-case scenario happens after the first budget supply of Q_s has overrun with an amount of X_s. This leads to a payback in one of the subsequent component periods. A payback in the second period, as shown in Figure 1(a), means that (i) the amount of overrun X_s is deducted from the next replenishment of Q_s; and (ii) the next replenishment of Q_s is serviced as late as possible before the deadline P_s. The longest blackout of the processor supply is $BD_s = 2(P_s - Q_s) + X_s$.

Alternatively, the component may overrun its budget again in the second period, see Figure 1(b), so that a payback happens in the third period. The budget in the third period is again supplied as late as possible, taking into account that there must be enough time until the deadline to accommodate for another overrun. Although this case has a smaller worst-case processor blackout of $BD_s = 2(P_s - Q_s)$, this is still pessimistic.

Since component deadlines are assumed to be equal to their period P_s, it is sufficient to consider the response time of the first activation of each component, see (8). Furthermore, the schedulability test in (5) guarantees that an amount of $Q_s + X_s$ budget can be provisioned within a period P_s. As a consequence, the latest start time of that budget provisioning is $P_s - (Q_s + X_s)$. This is independent of whether or not an overrun has taken place, as shown in Figure 2.

We can now derive the following lemma:
by applying the EDP model [18], because this would further reduce the blackout duration of $BD_s = 2(P_s - Q_s)$, using the periodic resource model [1], however, we already assume an initial delay of BD_s followed by a periodic supply of a budget of size Q_s.

We already observed that the overrun budget X_s is merely for global reasons, because the task set does not need an extra budget of X_s, i.e. it is already feasible with a budget of Q_s every period P_s. The remaining question is: given that a fixed-priority-scheduled task set using a plain SRP-based resource arbitration is schedulable on a periodic resource $\Gamma_s(P_s, Q_s, X_s)$, is there any task that may experience insufficient budget after a payback of at most X_s budget?

The analysis by Behnam et al. [11] is based on the point of view that the minimum resource supply in an interval of length P_s must be assumed to be equal to $Q_s - X_s$, as suggested by Figure 1. We will show that the model in [11] is indeed overly complex and pessimistic. The main reasoning behind this claim is that the task set as a whole actually receives Q_s budget in an interval of length P_s, but the individual resource supply to a task activation has changed. An overrun advances exactly the amount of budget of at most X_s to complete the critical section. The task activations that have consumed this overrun cannot claim again processor time in the next budget supply, so that a potential subsequent overrun cannot be caused by them. The overrun budget in Figure 2 is grid-marked to indicate its partial availability.

Lemma 3: Given that a fixed-priority-scheduled task set T_s under SRP-based resource arbitration is schedulable on a periodic resource $\Gamma_s(P_s, Q_s, X_s)$, a task $\tau_{si} \in T_s$ cannot miss its deadline when adding an overrun with payback mechanism.

Proof: We only need to consider the case where an overrun situation has taken place subsequently causing a payback at the next budget replenishment. In other situations the resource supply is unchanged compared to the sbf_Γ, for independent components, see (1).

We observe that an overrun situation can only be caused by a resource lock by any of the tasks $\tau_{si} \in T_s$. Assume that task τ_{si} locks resource R_i, so that the component ceiling is at least equal to the resource ceiling rc_{si}. Furthermore, budget Q_s depletes during resource access. This means that component C_s may overrun its normal budget Q_s for at most an amount of $X_s \tau$ processor time, which allows to complete the critical section initiated by task τ_{si}.

We proof by contradiction that no task $\tau_{sj} \in T_s$ will miss a deadline due to the payback of X_s budget at the next replenishment of the normal budget Q_s, i.e. assume that there exists a task $\tau_{sj} \in T_s$ that will miss a deadline after an overrun.

We tackle this proof obligation by distinguishing four cases: tasks that may preempt the critical section ($j < rc_{si}$), tasks that are blocked during the critical section ($rc_{si} \leq j < i$), the resource-locking task τ_{si} itself ($i = j$) and tasks that have a lower priority than the resource-locking task $i < j$.

1) $j < rc_{si}$: these tasks may preempt the critical section. Moreover, these tasks contribute to the length of X_s for at most a single preemption (Lemma 1). This means that if the task
arrives after depletion of Q_s and an overrun takes place, then it will execute in the overrun budget. Contrary to the assumptions in [11], these task will actually consume the overrun budget when it is available. An activation of task τ_{sj} which consumes C_{sj} of overrun budget cannot request the same amount of budget in the next budget period P_s, because it has already finished its execution during the overrun. And vice versa: if an activation of task τ_{sj} requests for C_{sj} of normal budget, then it did not execute during a possible overrun in the previous budget period. An overrun in the previous period could therefore have at most a length of $X_{sl} - C_{sj}$. If C_{sj} of the overrun has not been consumed, then the next budget supply will also not be reduced with this amount of payback. Thus, the resources requested by the current activation of task τ_{sj}, i.e. C_{sj}, will be available before task τ_{sj} will miss a deadline. Hence, no higher priority task τ_{sj} where $j < rc_{sl}$ will miss a deadline due to a payback.

2) $rc_{sl} \leq j < i$: these tasks are blocked during the critical section by the resource ceiling. When we do not advance the overrun budget X_{sl} compared to plain SRP-based resource arbitration, these tasks are schedulable. The reason for this is that the blocking duration of at most X_{sl} is already accounted in the $\text{rbf}_s(t,j)$ of task τ_{sj}. A new periodic supply cannot start with local blocking, because blocking should already start in the previous provisioning and use the overrun (if needed). Hence, OWP does not cause a deadline miss for any of the tasks τ_{sj} that are blocked by the resource-accessing task τ_{sl}.

3) $i = j$: for the resource locking task τ_{si} itself the same reasoning holds as for the first case: it either consumes an amount of h_{sil} of the overrun budget in the previous budget period or it consumes h_{sil} from the normal budget Q_s in the current budget period. Both cases are mutually exclusive and cannot cause a deadline miss.

4) $i < j$: these tasks have a lower priority than the resource-locking task and have already accounted X_{sl} as interference in their $\text{rfb}_s(t,j)$. Hence, similarly to case 3, these tasks cannot assume that any budget would be immediately available after replenishment of Q_s in case of plain SRP-arbitration. The overrun with payback mechanism does therefore not cause a deadline miss to any of the tasks τ_{sj} where $i < j$.

By contradiction we have shown that advancing the resource supply of X_s due to overrun with payback does not hamper the schedulability of task set T_s compared to plain SRP-based resource arbitration.

From both Lemma 2 and Lemma 3 we directly obtain the following result:

Theorem 2: The local schedulability analysis for a task set T_s on an SRP+fixed-priority-scheduled periodic resource $\Gamma_s(P_s, Q_s, X_s)$ can be applied when arbitrating global shared resources using overrun with payback (OWP).

We believe this theorem yields an interesting result, because it shows that the local schedulability analysis of overrun with and without payback are exactly the same. In particular, we can reuse the sufficient schedulability condition for ONP as presented in (10).

Finally, we answer the main question of this section: to payback or not? The global schedulability analysis for components arbitrated by overrun with payback is unchanged and was already considerably better than the global analysis of overrun without payback. In addition, we have improved the local schedulability analysis, such that there is no difference between ONP and OWP. Hence, there is no reason to deploy overrun without a payback mechanism from a compositional schedulability perspective.

VI. Opaque Analysis: Efficiency vs Abstraction

In this section we define the notion of an opaque analysis.

Definition 1: An opaque analysis provides a sufficient schedulability condition for a task set T_s. Even under global resource sharing, it uses an unmodified processor supply abstraction sharing $\text{rbf}_s(t)$ as in (1) and an unmodified processor request bound for all tasks in T_s compared to their analysis on a dedicated processor, i.e. $\text{rfb}_s(t,i)$ as in (11).

This definition makes it possible to compare the different synchronization protocols at the same abstraction level. Moreover, given an opaque analysis for SIRAP, OWP and ONP, we can defer the selection of a global synchronization protocol until component-integration time. We first investigate what analytical opacity means. Secondly, we investigate what opacity means for a component programmer.

A. Opacity from an analytical perspective

For the ONP and OWP, it is sufficient to know the maximum resource holding time, X_{sl}, of an unspecified access to resource R_l. Contrary to SIRAP, this information is independent of the time values inspected for the local schedulability analysis and the number of accesses to a resource by a job.

The ONP analysis has been improved in [19] by introducing an explicit deadline using the EDP model for the budget supply. However, since this deadline modifies the processor supply sbf based on the value of X_s, this analysis violates our definition of opacity. The same holds for the enhanced overrun in [11], which we consider obsolete based on our new OWP analysis. Table I gives an overview of analysis methods for global resource sharing in HSFs based on their opacity compliance.

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Opacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>BROE [10]</td>
<td>yes</td>
</tr>
<tr>
<td>HSRP - overrun without payback (ONP) [3]</td>
<td>no</td>
</tr>
<tr>
<td>HSRP - overrun without payback (ONP) [11]</td>
<td>yes</td>
</tr>
<tr>
<td>Improved overrun without payback (IONP) [19]</td>
<td>no</td>
</tr>
<tr>
<td>HSRP - overrun with payback (OWP) [3], [11]</td>
<td>no</td>
</tr>
<tr>
<td>SIRAP [4], [14]</td>
<td>no</td>
</tr>
</tbody>
</table>

We showed that ONP provides an opaque analysis for SIRAP and we proposed an opaque OWP analysis.

B. Opacity from a programmer’s perspective

For a programmer, opacity serves two purposes. Firstly, a component may use logical resources for which exclusive local usage or global usage is determined upon component
integration [20]. From anopacity perspective [20], i.e. neither
the environment nor other components can modify a compo-
nent’s code, unified primitives may be desirable to access local
and global resources. The actual binding of function calls to
the synchronization primitives that arbitrate either global or
local resource access can be done at compile time or when the
component is loaded into the framework. This dynamic binding
of primitives makes it possible to decouple the specification
of global resources from their use in the implementation.

Secondly, a component may require external resources in
the component’s code. Opacity abstracts that the resource is
global to the component during development. Since accessing
global resources may block tasks in other components, a
programmer must specify any required global resource. The
system integrator cannot perform the global schedulability
analysis without a valid upper bound on the resource holding
times X_{R} of each component C_{Si} that shares resource R_{l}.

Only during integration time, however, one actually knows
whether or not the global resources specified in the timing
interface are globally shared, i.e. if resource R_{l} is not shared
by any other component, then resource R_{l} can be considered
as a local shared resource. If we have chosen the SIRAP
analysis to analyze global resource arbitration, then we need
to redo the local schedulability analysis at integration time
to make use of the fact that R_{l} is a local resource. With the
ONP analysis, which provides an upper bound for SIRAP, it
is unnecessary to redo the local analysis, because the local
analysis presented in (11) is compliant with local SRP. An
opaque analysis therefore facilitates an abstraction for global
resources sharing during component development.

VII. EVALUATION

This section evaluates the budgets allocated by the periodic
resource model under different protocols for global synchro-
nization. We look for the percentage of schedulable task sets.
Contrary to [15], [11], [14] where a protocol is chosen at the
system level, we investigate for which task-characteristics a
particular analysis method is better, i.e. at the component level.
From these results, we may later derive which protocol matches
the best with given system characteristics.

For each component the task periods T_{Si} are uniformly
drawn from the interval $[140,1000]$. We assume deadlines
equal to periods, i.e. $T_{Si} = D_{Si}$ and we assign deadline
monotonic priorities to tasks. The individual task utilizations
u_{Si} are generated using the UUnfast algorithm [21]. Using
the task’s utilization u_{Si} and the randomly generated period T_{Si},
we can derive the worst-case execution time C_{Si} of a task T_{Si},
i.e. $C_{Si} = u_{Si} \times T_{Si}$. All tasks access a single global resource
for a random duration between $0.1 \times C_{Si}$ and $0.25 \times C_{Si}$. In
each simulation study a new set of 1000 systems is generated
and the following settings are changed:

1) Component utilization: The utilization of a component
$U(T)$ is varied within a range of $[0.05,1.0]$ using
incremental steps of 0.05, see Figure 4.

2) Component periods: The period of the periodic resource
P_{S} is varied within a range of $[5,70]$ with incremental
steps of 5, see Figure 5.

For comparison purposes we included the results for the
improved local analysis of ONP [19], i.e. IONP. Both exper-
iments show that the different overrun methods have little
impact on the local schedulability of a task set on a periodic
resource. The main reason for this is the constraint that
the calculated budget Q_{S} and the overrun budget X_{S} have to fit
within period P_{S}, i.e. we applied the constraint $Q_{S} + X_{S} \leq P_{S}$.
For SIRAP, we require that $X_{S} \leq Q_{S}$. Due to this constraint,
SIRAP’s performance is suppressed for small resource periods.
However, both figures show the cost of an opaque analysis in
the context of two-level FPPS-based HSFs.

![Figure 4. Ratio of schedulable task sets versus the utilization, where the
component period is $P_{S} = 40$ and the number of tasks is $n_{S} = 8$.](image)

![Figure 5. Ratio of feasible task sets as a function of the component period,
where the number of tasks is $n_{S} = 8$ and the utilization $U(T) = 0.4$.](image)
leave the remaining experimental results out of this paper due to space constraints. Since OWP performs equally well as ONP at the local level, and the global schedulability is superior for OWP compared to ONP, OWP is preferred above ONP.

Note that the non-opaque IONP analysis in [19] may slightly improve on IOWP and ONP. However, the global analysis for OWP is always better than or equal to the global analysis of ONP. This gives an advantage to ONP when both integration tests in (6) and (8) yield the same result, i.e. when all component periods are chosen approximately the same, so that also OWP accounts for an overrun in each component period.

VIII. Recommendations and Conclusions

This paper introduced the notion of opaque analysis for resource sharing components that need to be integrated on a single processor platform. An opaque analysis makes it possible to defer the choice for a resource-sharing protocol until component integration time. Although SIRAP’s analysis is not opaque, we can use overrun without payback (ONP) as a conservative and opaque alternative. We can obtain a tighter schedulability analysis using SIRAP’s analysis, if we are provided a task-set’s detailed timing information. Finally, we also provided an opaque analysis for overrun with payback (OWP), which dominates the opaque ONP. Only when all component periods are almost the same, a non-opaque ONP may take advantage over OWP.

REFERENCES

[5] M. Bertogna, N. Fisher, and S. Baruah, “Static-priority scheduling and resource sharing components that need to be integrated on a single processor platform. An opaque analysis makes it possible to defer the choice for a resource-sharing protocol until component integration time. Although SIRAP’s analysis is not opaque, we can use overrun without payback (ONP) as a conservative and opaque alternative. We can obtain a tighter schedulability analysis using SIRAP’s analysis, if we are provided a task-set’s detailed timing information. Finally, we also provided an opaque analysis for overrun with payback (OWP), which dominates the opaque ONP. Only when all component periods are almost the same, a non-opaque ONP may take advantage over OWP.

APPENDIX

Constructing Self-blocking Sets

For the SIRAP analysis [14] we need to construct a multi-set \(G_{\text{sort}}^s(t) \) of self-blocking durations that a task \(\tau_{si} \) may experience in a time interval of length \(t \). The self-blocking term \(I_{si} \) of a task \(\tau_{si} \) is defined as follows:

\[
I_{si}(t) = \sum_{1 \leq i \leq z(t)} G_{\text{sort}}^s(t)[i],
\]

(16)

where \(z(t) = \left\lfloor \frac{t}{p_{\tau}} \right\rfloor \) defines an upper bound to the number of self-blocking occurrences within a time interval of length \(t \) and \(G_{\text{sort}}^s(t) \) defines an multi-set (i.e. a set including duplicates of values \(X_{si} \)) of self-blocking lengths that a task \(\tau_{si} \) may experience by itself and other tasks \(\tau_{sj} \) in the same component.

This multi-set contains the extra blocking that a task may suffer due to self-blocking by lower priority tasks:

\[
I_{iow} = \max(0, \max \{ X_{sjl} \mid i < j \land X_{sjl} > 0 \land r_{ql} \leq i \}).
\]

(17)

In addition, the multi-set contains the self-blocking durations of task \(\tau_{si} \) itself and the interference caused by self-blocking of higher priority tasks, so that we can define the multi-set \(G_{\text{si}}(t) \) as follows [14]:

\[
G_{\text{si}}(t) = \{ I_{iow} \cup \\
\left(\bigcup_{(1 \leq j \leq i)} \bigcup_{1 \leq k \leq T_{sjl}} \bigcup_{(R_{l} \in R_{t})} (1 \leq s \leq m_{sjl}) \{ X_{sjl} \} \right) \}.
\]

(18)

The term \(\bigcup_{(1 \leq i \leq \min(1, j))} \) iterates over all tasks \(\tau_{sj} \) with an higher priority than task \(\tau_{si} \) and includes the self-blocking by task \(\tau_{sj} \) itself when \(i = j \); the term \(\bigcup_{(1 \leq k \leq T_{sjl})} \) considers all activations of task \(\tau_{sj} \) in an interval of length \(t \); the term \(\bigcup_{(R_{l} \in R_{t})} \) considers all resources \(R_{l} \) accessed by task \(\tau_{sj} \) and, finally, the term \(\bigcup_{(1 \leq s \leq m_{sjl})} \) iterates over the number of resource accesses to resource \(R_{l} \) by task \(\tau_{sj} \). In other words: during each job-activation a task \(\tau_{sj} \) may accesses a shared resource \(R_{l} \) for \(m_{sjl} \) times and it can self-block at any of these attempts. Finally, we sort the values in the multi-set \(G_{\text{si}}(t) \) in non-increasing order, resulting in the multi-set \(G_{\text{sort}}^s(t) \).

Equation (16) contributes a number of \(z(t) \) largest self-blocking occurrences that a task \(\tau_{si} \) may experience in an interval of length \(t \), i.e. the first \(z(t) \) elements of \(G_{\text{sort}}^s(t) \).