Introduction

Hard titaniumcarbide coatings can be used for protecting machine tools against abrasion and corrosion and so extending the tools lifetime. In this work it is shown how to measure and change the chemical composition and mechanical properties of titaniumcarbide coatings.

Experimental

Thin layers of titaniumcarbide are deposited on stainless steel substrates by unbalanced magnetron sputtering. The coatings are made by the reaction of sputtered titanium and acetylene in an argon plasma. The acetylene flow is controlled by using a plasma emission monitor (I_{PEM}).

The chemical composition of the coatings is determined by the enforced gas flow. The mechanical properties of the coatings are determined by the applied bias voltage. Coatings are chemically examined by XPS, XRD and EPMA. The mechanical properties of the coatings are determined by measuring the residual stresses and by determining coating failure in bulging and bending. The last two in tensile condition.

Results

Coatings produced with $I_{PEM}=75\%$ show to be stoichiometric. Coatings produced with $I_{PEM} > 75\%$ also contain an increasing amount of Ti.

Discussion

Coatings produced with values of $I_{PEM} > 75\%$ contain free titanium as well as titaniumcarbide. Taking into account that titanium is more ductile than titaniumcarbide, this explains the higher strains to failure for higher values of I_{PEM}.

Since the direction of the applied stresses in bending and bulging are opposite to the direction of the residual stress, it is expected that the strain to failure for bulging and bending will increase as the compressive residual stresses in the coating will be higher. The figures affirm this.

It is also evident that bias voltages of -80V, -100V and -150V give almost the same mechanical behaviour.

Conclusions

* The production of stoichiometric titaniumcarbide is possible.
* The mechanical properties can be adjusted for a given application.
* There is no use of applying a more negative bias voltage than -80V when producing titaniumcarbide coatings.