Mechano-regulation by deviatoric strain and fluid flow predicts tissue differentiation during distraction osteogenesis

Hanna Isaksson*, René van Donkelaar, Rik Huiskes, Keita Ito*
Department of Biomedical Engineering, Eindhoven University of Technology * AO Research Institute, Davos Switzerland

Introduction
Mechano-regulation algorithms have been proposed to explain tissue differentiation of precursor cells during osteogenesis. However, corroboration of these algorithms have shown to be difficult1-2, partly because repeatable experimental outcomes under controlled mechanical conditions are rarely available. During distraction osteogenesis (DO), a controlled displacement is used to regenerate large volumes of new bone.

The aim with the current study was to computationally predict bone regeneration during DO over time and use this model to further validate a mechano-regulation algorithm based on deviatoric strain and fluid flow3.

Methods
• The model was based on an ovine experimental model4 which evaluated bone segment transport in tibial shaft defects (20 and 45 mm) over an intramedullary nail (Fig. 1a).
• Distraction started at post op day 3 with rate of 1mm/day until defect was closed. Daily distraction forces, force relaxation, weekly radiographs and undecalcified histology were available for comparison.
• Depending on the deviatoric strain and fluid velocity3 calculated in the FE analysis, cells that migrated into the callus through diffusion, differentiated into fibroblasts, chondrocytes or osteoblasts, and predicted new element material properties. 1 iteration simulated 1 day distraction.
• Due to large geometrical increase, re-meshing and re-mapping of material properties via interpolation were used.
• Matrix production and tissue growth was simulated by allowing tissue relaxation until equilibrium. Tissues were modeled as linear poroelastic.

Results
Experimental
• Showed good reproducibility without much variation between defects.
• During week 1, only small slightly radio-opaque areas in distraction gap were seen. From week 2, strips of increased density started from the cortical bone ends and grew towards each other. Throughout transport, an area of soft tissue in the middle of the regenerate were seen.
• Bony bridging was observed after distraction was complete.

Modeling
• The predicted bone formation pattern was overall similar to what was seen experimentally.
• Initially, predicted tissues were mainly fibrous. First bone formation occurred at periosteum (day 6), followed by bone formation in the gap area that grew as distraction proceeded.
• Gap with soft tissue remained until distraction was finalized.
• During consolidation, maturation and final bridging occurred. A steady state situation were observed with similar tissue distributions for both 20 mm and 45 mm distraction.

Discussion
• Mechano-regulation based on deviatoric strain and fluid velocity was able to predict bone formation pattern during DO from initial corticotomy to final consolidation. Comparison of soft tissues (amounts of fibrous tissue vs. cartilaginous tissues) are still pending.
• Relative amounts of endochondral vs. intramembranous bone formation during DO are directly related to distraction rate. Next, this promising model will be used to evaluate variations and optimize & accelerate DO treatment protocols.

References:

Figure 1a) Experimental model for bone segment transport. b) 20 axisymmetric FE model of ovine tibia.

Figure 2 Distraction osteogenesis simulated adaptively (MATLAB)

Figure 3 Predicted bone formation pattern during DO of a 20 mm defect (day 1-20), followed by consolidation and maturation.

Figure 4 Magnitudes of a) fluid velocity and b) deviatoric strain after 15 days of distraction

/department of biomedical engineering in collaboration with Universiteit Maastricht